Maintenance of renal vascular reactivity contributes to acute renal failure during endotoxemic shock.

نویسندگان

  • Jean-Jacques Boffa
  • William J Arendshorst
چکیده

Septic shock is characterized by hypotension and decreased systemic vascular resistance and impaired vascular reactivity. Renal vasoconstriction markedly contrasts with sepsis-induced generalized systemic vasodilation, which is strongly dependent on nitric oxide. Whether maintained renal vascular reactivity to vasoconstrictors contributes to the decrease in renal blood flow (RBF) and GFR observed during LPS-induced sepsis was tested by assessment of the acute effects of pressor agents on mean arterial pressure (MAP) and renal hemodynamics in endotoxemic and control mice. LPS-injected mice displayed lower MAP, RBF, and GFR than controls (P < 0.001). Despite a lower MAP, basal renal vascular resistance (RVR) was higher during endotoxemia (P < 0.02). Angiotensin II infusion produced a weaker MAP response in septic mice (24 versus 37%; P < 0.005), suggesting impaired vasoconstriction and hyporeactivity. A similar MAP increase was observed between groups during norepinephrine (NE) infusion. The MAP increase to nitric oxide synthase inhibition by N(G)-nitro-L-arginine methyl ester (L-NAME) was much greater in LPS-treated mice (41 versus 15%, P = 0.01), indicating a strong influence of nitric oxide in sepsis. In contrast, the RBF and RVR responses to angiotensin II, NE, or L-NAME were similar in both groups. Moreover, vasopressin produced greater changes in MAP, RBF, and RVR in septic mice than in controls. Among the vasoconstrictor challenges, only NE ameliorated the decrease in GFR 14 h after LPS injection. The in vivo results demonstrate that the renal microvasculature displays a normal or enhanced reactivity to constrictor agents as compared with nonrenal circulatory beds. Such responsiveness may contribute to reduced RBF and GFR during endotoxemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thromboxane receptor mediates renal vasoconstriction and contributes to acute renal failure in endotoxemic mice.

Sepsis is a major cause of acute renal failure (ARF) and death. Thromboxane A2 (TxA(2)) may mediate decreases of renal blood flow (RBF) and/or GFR associated with LPS-induced sepsis. This study tested whether TxA(2) receptor blockade, with the use of TxA(2) receptor knockout (TP-KO) mice or a selective TP receptor antagonist (SQ29,548), would alleviate LPS-induced renal vasoconstriction and ARF...

متن کامل

Desensitization of soluble guanylate cyclase in renal cortex during endotoxemia in mice.

Acute endotoxemic renal failure involves renal vasoconstriction, which presumably occurs despite increased nitric oxide (NO) generation by inducible NO synthase in the kidney. The present study examined the hypothesis that the renal vasoconstriction during endotoxemia occurs in part because of desensitization of soluble guanylate cyclase (sGC). Endotoxic shock was induced in male B6/129F2/J mic...

متن کامل

Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways

Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...

متن کامل

Interaction among nitric oxide, reactive oxygen species, and antioxidants during endotoxemia-related acute renal failure.

Acute renal failure (ARF) during sepsis is associated with increased nitric oxide (NO) and oxygen radicals, including superoxide (O(2)(-)). Because O(2)(-) reacts with NO in a rapid manner, it plays an important role in modulating NO levels. Therefore, scavenging of O(2)(-) by superoxide dismutase (SOD) may be critical for preserving NO bioavailability. In mice, substantial renal extracellular ...

متن کامل

بررسی فراوانی نارسایی حاد کلیه در نوزادان مبتلا به سپتی‌سمی در بخش نوزادان بیمارستان بهارلو(سالهای 78-1377)

Neonatal sepsis is common specially in developing countries and is the main cause of neonatal mortality. Among the organs which are influenced during sepsis kidney is associated with mortality rate.This study was undertaken to determine the association between acute renal and sex, age, birth weight, type of treatment, gestational age, duration of treatment and the history of asphyxia. In this c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2005